精英家教网 > 高中数学 > 题目详情
19.已知各项都为正数的数列{an}满足a1=1,an2-(2an-1-1)an-2an-1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和为Tn

分析 (Ⅰ)推出数列{an}是等比数列,然后求解通项公式,利用作差法,然后求解{bn}的通项公式;
(Ⅱ)化简通项公式,利用错位相减法求和即可.

解答 解:(Ⅰ)${a_n}^2-(2{a_{n-1}}-1){a_n}-2{a_{n-1}}=0$变形可得(an-2an-1)(an+1)=0,
即有an=2an-1或an=-1,
又由数列{an}各项都为正数,则有an=2an-1
故数列{an}是首项为a1=1,公比为2的等比数列,则${a_n}={2^{n-1}}$…(3分)
由题意知,当n=1时,b1=b2-1,故b2=2,
当n≥2时,${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+…+\frac{1}{n-1}{b_{n-1}}={b_n}-1$,
和b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
作差得,$\frac{1}{n}{b_n}={b_{n+1}}-{b_n}$,整理得:$\frac{{b}_{n}}{n}=\frac{{b}_{n+1}}{n+1}$,∴$\frac{{b}_{n}}{n}=…=\frac{{b}_{1}}{1}$=1,∴bn=n
∴${a_n}={2^{n-1}}$;bn=n,n∈N*…(6分)
(Ⅱ)由(Ⅰ)知,${a_n}{b_n}=n•{2^{n-1}}$,
因此${T_n}=1+2•2+3•{2^2}+…+n•{2^{n-1}}$,
∴$2{T_n}=1•2+2•{2^2}+3•{2^3}+…+n•{2^n}$,
两式作差得:$-{T_n}=1+2+{2^2}+{2^3}+…+{2^{n-1}}-n•{2^n}=-1-(1-n)•{2^n}∴{T_n}=(n-1)•{2^n}+1(n∈{N^*})$…(12分).

点评 本题考查数列的递推关系式的应用,数列求和,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若等差数列{an}与等比数列{bn}中,若a1=b1>0,a11=b11>0,则a6,b6的大小关系为a6≥b6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若O为坐标原点,已知实数x,y满足条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,在可行域内任取一点P(x,y),则|OP|的最小值为(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z=|$\sqrt{3}$-i|+i2017(i为虚数单位),则复数z为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$共线”是“|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD=$\sqrt{5}$,PB=$\sqrt{7}$
(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)设Q是棱PC上的点,当PA∥平面BDQ时,求QB与面ABCD成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线y=kx+1和双曲线3x2-y2=1相交,交点为A、B,当k为何值时,以弦AB为直径的圆过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(3x+$\frac{π}{4}$)
(1)求f(x)的单调减区间;
(2)若α是锐角,f($\frac{α}{3}$)=cos2α,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,α为倾斜角),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+4=0.
(Ⅰ)求曲线C的普通方程和参数方程;
(Ⅱ)设l与曲线C交于A,B两点,求线段|AB|的取值范围.

查看答案和解析>>

同步练习册答案