精英家教网 > 高中数学 > 题目详情
7.复数z=|$\sqrt{3}$-i|+i2017(i为虚数单位),则复数z为(  )
A.2-iB.2+iC.4-iD.4+i

分析 i4=1,可得i2017=(i4504•i=i.再利用复数的运算法则、模的计算公式即可得出.

解答 解:∵i4=1,∴i2017=(i4504•i=i,
∴z=$\sqrt{3+1}$+i=2+i,
故选:B.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.随机变量X~N(9,σ2),P(X<6)=0.2,则P(9<X<12)=(  )
A.0.3B.0.4C.0.4987D.0.9974

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,则复数$\frac{1+i}{2i}$的虚部为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M,N分别是EF,BC的中点,AB=2AF,∠CBA=
60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为$\frac{{\sqrt{3}}}{3}$,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若sin2(B+C)+cos2B+cos2C+sinBsinC≥2,则角A的取值范围是(  )
A.$(0,\frac{π}{6}]$B.$[\frac{π}{3},\frac{π}{2}]$C.$(0,\frac{π}{3}]$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均是正数,其前n项和为Sn,满足Sn=4-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{2-{{log}_2}{a_n}}}$(n∈N*),数列{bn•bn+2}的前n项和为Tn,求证:${T_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知各项都为正数的数列{an}满足a1=1,an2-(2an-1-1)an-2an-1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把-1485°化为α+2kπ(k∈Z,0≤α≤2π)的形式是(  )
A.$\frac{π}{4}$-8πB.-$\frac{7}{4}$π-8πC.-$\frac{π}{4}$-10πD.-10π+$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线x-y-2=0被圆(x-a)2+y2=4所截得的弦长为$2\sqrt{2}$,则实数a为(  )
A.-1或$\sqrt{3}$B.1或3C.-2或6D.0或4

查看答案和解析>>

同步练习册答案