精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的各项均是正数,其前n项和为Sn,满足Sn=4-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{2-{{log}_2}{a_n}}}$(n∈N*),数列{bn•bn+2}的前n项和为Tn,求证:${T_n}<\frac{3}{4}$.

分析 (1)利用递推关系、等比数列的通项公式即可得出.
(2)利用裂项求和方法、数列的单调性即可证明.

解答 解:(1)由Sn=4-an,得S1=4-a1,解得a1=2
而an+1=Sn+1-Sn=(4-an+1)-(4-an)=an-an+1,即2an+1=an
∴$\frac{{{a_{n+1}}}}{a_n}=\frac{1}{2}$可见数列{an}是首项为2,公比为$\frac{1}{2}$的等比数列.
∴${a_n}=2•{({\frac{1}{2}})^{n-1}}={({\frac{1}{2}})^{n-2}}$;
(2)证明:∵${b_n}=\frac{1}{{2-{{log}_2}{a_n}}}$=$\frac{1}{{2-({2-n})}}=\frac{1}{n}$,
∴${b_n}{b_{n+2}}=\frac{1}{{n({n+2})}}$=$\frac{1}{2}({\frac{1}{n}-\frac{1}{n+2}})$
故数列{bnbn+2}的前n项和${T_n}=\frac{1}{2}[{({1-\frac{1}{3}})}\right.+({\frac{1}{2}-\frac{1}{4}})+$$({\frac{1}{3}-\frac{1}{5}})+({\frac{1}{4}-\frac{1}{6}})+…+$$\left.{({\frac{1}{n-1}-\frac{1}{n+1}})+({\frac{1}{n}-\frac{1}{n+2}})}]$
=$\frac{1}{2}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})$=$\frac{1}{2}({\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}})$
=$\frac{3}{4}-\frac{1}{2}$$({\frac{1}{n+1}+\frac{1}{n+2}})<\frac{3}{4}$

点评 本题考查了等比数列的通项公式、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设向量$\overrightarrow{a}$$\overrightarrow{b}$、满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow{b}$)=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|x<-2或x>1,x∈R},B={x|x<0或x>2,x∈R},则(∁RA)∩B是(  )
A.(-2,0)B.(-2,0]C.[-2,0)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\frac{x^2}{2}+{y^2}≤1$,则$\sqrt{2}$a+b取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z=|$\sqrt{3}$-i|+i2017(i为虚数单位),则复数z为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx,则二项式(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中的常数项是120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD=$\sqrt{5}$,PB=$\sqrt{7}$
(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)设Q是棱PC上的点,当PA∥平面BDQ时,求QB与面ABCD成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线l:kx-y-2k-3=0与圆C相交于A,B两点,使△ABC为直角三角形,则k=k=1或k=$\frac{17}{7}$;若直线l上至少存在一点,使得以该点为圆心,$\frac{1}{2}$为半径的圆与圆C有公共点,则k的最小值为$\frac{24-3\sqrt{85}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

同步练习册答案