精英家教网 > 高中数学 > 题目详情
18.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为$\frac{2\sqrt{6}}{5}$.

分析 由题意画出图形,可知要使四边形PACB面积最小,则P为过圆心作直线3x+4y+8=0的垂线得垂足,由点到直线的距离公式求得PC,再由勾股定理得弦长,代入三角形面积公式得答案.

解答 解:如图,
直线3x+4y+8=0与圆x2+y2-2x+2y+1=0相离,
化圆x2+y2-2x+2y+1=0为(x-1)2+(y+1)2=1,圆心坐标为C(1,-1),半径为1.
连接CA,CB,则CA⊥PA,CB⊥PB,
则四边形PACB的面积等于两个全等直角三角形PAC与PBC的面积和.
∵AC是半径,为定值1,要使三角形PAC的面积最小,则PC最小,
|PC|=$\frac{|3×1+4×(-1)+8|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{7}{5}$,
∴|PA|=$\sqrt{(\frac{7}{5})^{2}-{1}^{2}}=\frac{2\sqrt{6}}{5}$.
∴四边形PACB面积的最小值为2×$\frac{1}{2}×1×\frac{2\sqrt{6}}{5}=\frac{2\sqrt{6}}{5}$.
故答案为:$\frac{2\sqrt{6}}{5}$.

点评 本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均是正数,其前n项和为Sn,满足Sn=4-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{2-{{log}_2}{a_n}}}$(n∈N*),数列{bn•bn+2}的前n项和为Tn,求证:${T_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用一张长12cm,宽8cm的矩形铁皮围成圆柱体的侧面,则这个圆柱体的体积=$\frac{192}{π}$cm3或$\frac{288}{π}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[1,5]和[2,4]上分别各取一个数,记为m和n,则方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线x-y-2=0被圆(x-a)2+y2=4所截得的弦长为$2\sqrt{2}$,则实数a为(  )
A.-1或$\sqrt{3}$B.1或3C.-2或6D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示的程序框图,输出的S值等于$\frac{{{2^{10}}-1}}{{{2^{10}}}}$,则判断框内可以填(  )
A.k≤8?B.k≤9?C.k≤10?D.k≤11?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{6})$.
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面$ρ≤4cos(θ-\frac{π}{6})$的公共点,求$μ=\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,若输出的结果是$\frac{99}{199}$,则判断框内应填的内容是(  )
A.n≤97B.n≤98C.n≤99D.n≤100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图为某几何体的三视图,则其体积为$π+\frac{2}{3}$.

查看答案和解析>>

同步练习册答案