精英家教网 > 高中数学 > 题目详情
10.已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{6})$.
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面$ρ≤4cos(θ-\frac{π}{6})$的公共点,求$μ=\sqrt{3}x+y$的取值范围.

分析 (Ⅰ)圆C的极坐标方程转化为${ρ^2}=4ρ(\frac{{\sqrt{3}}}{2}cosθ+\frac{1}{2}sinθ)$,由此能求出圆C的直角坐标方程.
(Ⅱ)由圆C的方程转化为${(x-\sqrt{3})^2}+{(y-1)^2}=4$,得到圆C的圆心是$(\sqrt{3},1)$,半径是2,将$\left\{{\begin{array}{l}{x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$,代入$u=\sqrt{3}x+y$,得u=4-t,由此能求出$u=\sqrt{3}x+y$的取值范围.

解答 解:(Ⅰ)因为圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{6})$,
所以${ρ^2}=4ρ(\frac{{\sqrt{3}}}{2}cosθ+\frac{1}{2}sinθ)$
所以圆C的直角坐标方程${x^2}+{y^2}-2\sqrt{3}x-2y=0$.
(Ⅱ)由圆C的方程${x^2}+{y^2}-2\sqrt{3}x-2y=0$,可得${(x-\sqrt{3})^2}+{(y-1)^2}=4$,
所以圆C的圆心是$(\sqrt{3},1)$,半径是2,
将$\left\{{\begin{array}{l}{x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$,代入$u=\sqrt{3}x+y$,得u=4-t,
又直线l过$C(\sqrt{3},1)$,圆C的半径是2,所以-2≤t≤2,
即$u=\sqrt{3}x+y$的取值范围是[2,6].

点评 本题考查圆的直角坐标的求法,考查代数式的取值范围的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD=$\sqrt{5}$,PB=$\sqrt{7}$
(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)设Q是棱PC上的点,当PA∥平面BDQ时,求QB与面ABCD成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,AB=2,AC=3,∠BAC=90°,点D在AB上,点E在CD上,且∠ACB=∠DBE=∠DEB,则DC=$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,α为倾斜角),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+4=0.
(Ⅰ)求曲线C的普通方程和参数方程;
(Ⅱ)设l与曲线C交于A,B两点,求线段|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c^2}{a^2}-{{(\frac{{{c^2}+{a^2}-{b^2}}}{2})}^2}]}$,现有周长为10+2$\sqrt{7}$的△ABC满足sinA:sinB:sinC=2:3:$\sqrt{7}$,则用以上给出的公式求得△ABC的面积为(  )
A.$6\sqrt{3}$B.$4\sqrt{7}$C.$8\sqrt{7}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某几何体的三视图如图所示,则该几何体最长的一条棱的长度=2$\sqrt{2}$,体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是某多面体的三视图,则该几何体的外接球体积为4$\sqrt{3}$π.

查看答案和解析>>

同步练习册答案