精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,α为倾斜角),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+4=0.
(Ⅰ)求曲线C的普通方程和参数方程;
(Ⅱ)设l与曲线C交于A,B两点,求线段|AB|的取值范围.

分析 (Ⅰ)由曲线C的极坐标方程能求出曲线C的普通方程,由此能求出曲线C的参数方程.
(Ⅱ)把代入$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$代入(x-2)2+(y-3)2=9,得t2-2(cosα+2sinα)t-4=0,设A,B对应的参数分别为t1,t2,则t1+t2=2(cosα+2sinα),t1t2=-4,|AB|=|t1|+|t2|=|t1-t2|,由此能求出|AB|的取值范围.

解答 解:(Ⅰ)因为曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+4=0,
所以曲线C的普通方程为x2+y2-4x-6y+4=0,
即(x-2)2+(y-3)2=9,
所以曲线C的参数方程为$\left\{\begin{array}{l}x=2+3cosφ\\ y=3+3sinφ\end{array}\right.$(φ为参数).
(Ⅱ)把代入$\left\{\begin{array}{l}x=1+tcosα\\ y=1+tsinα\end{array}\right.$代入(x-2)2+(y-3)2=9,
并整理得t2-2(cosα+2sinα)t-4=0,
设A,B对应的参数分别为t1,t2
所以t1+t2=2(cosα+2sinα),t1t2=-4,
所以|AB|=|t1|+|t2|=|t1-t2|
=$\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{4{{(cosα+2sinα)}^2}+16}$=$\sqrt{4(1+4sinαcosα+3{{sin}^2}α)+16}$
=$\sqrt{4(1+2sin2α+3×\frac{1-cos2α}{2})+16}$=$\sqrt{10(\frac{4}{5}sin2α-\frac{3}{5}cos2α)+26}$,
设$cosφ=\frac{4}{5}$,$sinφ=\frac{3}{5}$,
∴$|AB|=\sqrt{10sin(2α-φ)+26}$,
∵-1≤sin(2α-φ)≤1,∴16≤10sin(2α-φ)+26≤3,∴4≤|AB|≤6,
∴|AB|的取值范围为[4,6].

点评 本题考查曲线的参数方程的求法,考查线段长的取值范围的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知各项都为正数的数列{an}满足a1=1,an2-(2an-1-1)an-2an-1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=a|x-2|+x.
(1)若函数f(x)有最大值,求a的取值范围;
(2)若a=1,求不等式f(x)>|2x-3|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线x-y-2=0被圆(x-a)2+y2=4所截得的弦长为$2\sqrt{2}$,则实数a为(  )
A.-1或$\sqrt{3}$B.1或3C.-2或6D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l:kx-y+k-$\sqrt{3}$=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=4$\sqrt{3}$,则|CD|=8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{6})$.
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面$ρ≤4cos(θ-\frac{π}{6})$的公共点,求$μ=\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果执行下面的框图,当m=7,n=3时,输出的S值为(  ) 
A.7B.42C.210D.840

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C1在平面直角坐标系中的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ-4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$直线MN与圆x2+y2=$\frac{4}{5}$相切,M(a,0),N(0,b)
(Ⅰ)求E的方程;
(Ⅱ)若E的右焦点为F,圆x2+y2=1的切线AB与E交于A,B 两点(A,B均在y轴右侧),求证:△ABF的周长为定值,并求△ABF的内切圆半径的最大值.

查看答案和解析>>

同步练习册答案