14£®ÒÑÖªÇúÏßC1ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÓÐÇúÏßC2£º¦Ñ=2cos¦È-4sin¦È
£¨1£©½«C1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬²¢Çó³öC2µÄÆ½ÃæÖ±½Ç×ø±ê·½³Ì
£¨2£©ÇóÇúÏßC1ºÍC2Á½½»µãÖ®¼äµÄ¾àÀ룮

·ÖÎö £¨1£©ÇúÏßC1ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÓÉÇúÏßC2£º¦Ñ=2cos¦È-4sin¦È£¬¼´¦Ñ2=¦Ñ£¨2cos¦È-4sin¦È£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨2£©x2+y2=2x-4y£®»¯Îª£¨x-1£©2+£¨y+2£©2=5£®¿ÉµÃÔ²ÐÄC2£¨1£¬-2£©£¬°ë¾¶r=$\sqrt{5}$£®Çó³öÔ²Ðĵ½Ö±ÏߵľàÀëd£¬¿ÉµÃÇúÏßC1ºÍC2Á½½»µãÖ®¼äµÄ¾àÀë=2$\sqrt{{r}^{2}-{d}^{2}}$£®

½â´ð ½â£º£¨1£©ÇúÏßC1ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£ºy=2x-1£®
ÓÉÇúÏßC2£º¦Ñ=2cos¦È-4sin¦È£¬¼´¦Ñ2=¦Ñ£¨2cos¦È-4sin¦È£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x-4y£®
£¨2£©x2+y2=2x-4y£®»¯Îª£¨x-1£©2+£¨y+2£©2=5£®¿ÉµÃÔ²ÐÄC2£¨1£¬-2£©£¬°ë¾¶r=$\sqrt{5}$£®
¡àÇúÏßC1ºÍC2Á½½»µãÖ®¼äµÄ¾àÀë=2$\sqrt{5-£¨\frac{2+2-1}{\sqrt{{1}^{2}+{2}^{2}}}£©^{2}}$=$\frac{8\sqrt{5}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=sin£¨3x+$\frac{¦Ð}{4}$£©
£¨1£©Çóf£¨x£©µÄµ¥µ÷¼õÇø¼ä£»
£¨2£©Èô¦ÁÊÇÈñ½Ç£¬f£¨$\frac{¦Á}{3}$£©=cos2¦Á£¬Çósin¦Á-cos¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=1+tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£¬¦ÁΪÇãб½Ç£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È-6¦Ñsin¦È+4=0£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍ²ÎÊý·½³Ì£»
£¨¢ò£©ÉèlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇóÏß¶Î|AB|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌå×µÄÒ»ÌõÀâµÄ³¤¶È=2$\sqrt{2}$£¬Ìå»ýΪ$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CËù¶ÔÓ¦µÄ±ß£¬ÇÒa-2b=0£®
£¨1£©Èô$B=\frac{¦Ð}{6}$£¬ÇóC£»
£¨2£©Èô$C=\frac{2}{3}¦Ð£¬c=14$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®2C£®$\frac{8}{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=2|x+1|+|x-3|£®
£¨1£©Çó²»µÈʽf£¨x£©£¼5µÄ½â¼¯£»
£¨2£©Éèg£¨x£©=kx£¬Èôf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¡÷ABCµÄÍâÐÄPÂú×ã$3\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{AC}$£¬ÔòcosA=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{3}}}{2}$C£®$-\frac{1}{3}$D£®$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$20+4\sqrt{5}$B£®$12+4\sqrt{5}$C£®$20+2\sqrt{5}$D£®$12+2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸