精英家教网 > 高中数学 > 题目详情
2.某几何体的三视图如图所示,则该几何体最长的一条棱的长度=2$\sqrt{2}$,体积为$\frac{2\sqrt{3}}{3}$.

分析 如图所示,该几何体为三棱锥P-ABC.其中PA⊥底面ABC,PA=2,底面△ABC是边长为2的等边三角形.

解答 解:如图所示,该几何体为三棱锥P-ABC.其中PA⊥底面ABC,PA=2,
底面△ABC是边长为2的等边三角形.
该几何体最长的一条棱的长度为PA或PC=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
体积V=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}×2$=$\frac{2\sqrt{3}}{3}$.
故答案为:2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$.

点评 本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.把-1485°化为α+2kπ(k∈Z,0≤α≤2π)的形式是(  )
A.$\frac{π}{4}$-8πB.-$\frac{7}{4}$π-8πC.-$\frac{π}{4}$-10πD.-10π+$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线x-y-2=0被圆(x-a)2+y2=4所截得的弦长为$2\sqrt{2}$,则实数a为(  )
A.-1或$\sqrt{3}$B.1或3C.-2或6D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{6})$.
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面$ρ≤4cos(θ-\frac{π}{6})$的公共点,求$μ=\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果执行下面的框图,当m=7,n=3时,输出的S值为(  ) 
A.7B.42C.210D.840

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,若输出的结果是$\frac{99}{199}$,则判断框内应填的内容是(  )
A.n≤97B.n≤98C.n≤99D.n≤100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C1在平面直角坐标系中的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ-4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在长方体ABCD-A1B1C1D1中,AA1=2AB=2BC,求异面直线A1B与AD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.第17届亚运会于2014年9月19日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下2×2列联表:
 喜爱运 动不喜爱运动总计
10 16
6 14
总计  30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?参考公式:K2=$\frac{n(ad-b{c)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

同步练习册答案