分析 连接A1C1,BC1,则AD1∥BC1,故∠A1BC1是异面直线A1B与AD1所成的角或其补角.在△A1BC1中使用余弦定理求出cos∠A1BC1即可得出结论.
解答
解:连接A1C1,BC1,则AD1∥BC1,
∴∠A1BC1是异面直线A1B与AD1所成的角或其补角.
设AB=BC=1,则AA1=2,
∴A1C1=$\sqrt{2}$,A1B=BC1=$\sqrt{5}$,
在△A1BC1中,由余弦定理得:cos∠A1BC1=$\frac{5+5-2}{2\sqrt{5}•\sqrt{5}}$=$\frac{4}{5}$.
∴异面直线A1B与AD1所成角的余弦值为$\frac{4}{5}$.
点评 本题考查了异面直线所成角的计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com