精英家教网 > 高中数学 > 题目详情
6.在区间[1,5]和[2,4]上分别各取一个数,记为m和n,则方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 由方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆,得到m>n,求出m>n对应的平面区域,利用几何概型能求出方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率.

解答 解:∵方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆,∴m>n,
∵在区间[1,5]和[2,4]上分别各取一个数,记为m和n,
∴m>n对应的平面区域如下图中阴影部分所示:
则方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率:
P=$\frac{{S}_{阴影}}{{S}_{矩形}}$=$\frac{\frac{1}{2}(1+3)×2}{2×4}$=$\frac{1}{2}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意几何概型的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\frac{x^2}{2}+{y^2}≤1$,则$\sqrt{2}$a+b取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线l:kx-y-2k-3=0与圆C相交于A,B两点,使△ABC为直角三角形,则k=k=1或k=$\frac{17}{7}$;若直线l上至少存在一点,使得以该点为圆心,$\frac{1}{2}$为半径的圆与圆C有公共点,则k的最小值为$\frac{24-3\sqrt{85}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆锥底面半径为10,母线长为30,从底面圆周上一点,绕侧面一周再回到该点的最短路线的长度是30$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,AB=2,AC=3,∠BAC=90°,点D在AB上,点E在CD上,且∠ACB=∠DBE=∠DEB,则DC=$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在三棱锥ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么(  )
A.点P必在直线AC上B.点P必在直线BD上
C.点P必在平面DBC内D.点P必在平面ABC外

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c^2}{a^2}-{{(\frac{{{c^2}+{a^2}-{b^2}}}{2})}^2}]}$,现有周长为10+2$\sqrt{7}$的△ABC满足sinA:sinB:sinC=2:3:$\sqrt{7}$,则用以上给出的公式求得△ABC的面积为(  )
A.$6\sqrt{3}$B.$4\sqrt{7}$C.$8\sqrt{7}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式|x-4|≤3 的整数解的个数是7.

查看答案和解析>>

同步练习册答案