分析 根据平面向量的数量积运算,求出cosθ的值,即可求出夹角θ的大小.
解答 解:由|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow{b}$)=0,
∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即12-1×2×cosθ=0,
解得cosθ=$\frac{1}{2}$;
又θ∈[0°,180°],
∴$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ是60°.
故答案为:60°.
点评 本题考查了平面向量数量积的运算问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com