精英家教网 > 高中数学 > 题目详情

已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

(1);(2)9.

解析试题分析:(1)年利润=销售总收入-总成本,所以,由于是分段函数,所以也是分段函数;(2)这是一个求分段函数最大值的问题,通常要先求出各段中的最大值,然后再比较这两个值,其中较大的一个即为所求,在各段求最大值时,要根据函数特点,适当选择方法,如利用基本不不等式,配方,导数等.
试题解析:(1)由题意得

(2)①当时,

 ,∴当时,,则递增;当时,,则递减;
∴当时,取最大值万元.
②当时,
当且仅当,即取最大值38.
综上,当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.
考点:函数在实际问题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求值:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:
(Ⅱ)求的最小值,并指出此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若的值域;
(Ⅱ)若存在实数,当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因。暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其它因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数。当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,时,排水量V是垃圾杂物密度x的一次函数。
(Ⅰ)当时,求函数V(x)的表达式;
(Ⅱ)当垃圾杂物密度x为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)可以达到最大,求出这个最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的值域为集合的定义域为集合,其中。(1)当,求;(2)设全集为R,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求的解析式;
(2) 若,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案