精英家教网 > 高中数学 > 题目详情
2.已知角α的终边过点P(-12,5),则(  )
A.cosα=-$\frac{5}{12}$B.tanα=-$\frac{12}{13}$C.sinα=$\frac{5}{13}$D.tanα=-$\frac{12}{5}$

分析 由题意利用任意角的三角函数的定义,得出结论.

解答 解:∵角α的终边过点P(-12,5),∴x=-12,y=5,r=|OP|=13,
∴sinα=$\frac{y}{r}$=$\frac{5}{13}$,cosα=$\frac{x}{r}$=-$\frac{12}{13}$,tanα=$\frac{y}{x}$=-$\frac{5}{12}$,
故选:C.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx.当x∈[-3π,3π]时,方程f(x)=g(x)根的个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(∁UA)∩B=(  )
A.(0,1]B.[-1,1]C.(1,2]D.(-∞,-1]∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1+$\frac{1}{{x}^{2}}$)(1+x)6展开式中x2的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α终边上有一点$P(cos\frac{10π}{3},sin(-\frac{11π}{6}))$,则tanα=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)为二次函数,且f(-1)=1,f'(0)=2,${∫}_{0}^{3}$f(x)dx=12;
(1)求f(x)的解析式;
(2)设g(x)=$\sqrt{f(x)-4}$,求${∫}_{0}^{2}$g(x)dx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,AB⊥AD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1,
(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求三棱锥M-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若△ABC中,A<B<C,且C≠$\frac{π}{2}$,则下列结论中正确的是(  )
A.tanA<tanCB.tanA>tanCC.sinA<sinCD.cosA<cosC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的充分不必要条件,求实数的取值范围;
(2)若m=5,“p∧q”为真命题,“p∨q”为假命题,求实数x的取值范围.

查看答案和解析>>

同步练习册答案