分析 f′(x)=x2+2ax+b2,要满足题意需x2+2ax+b2=0有两不等实根,由此能求出该函数有两个极值点的概率.
解答 解:∵f(x)=$\frac{1}{3}$x3+ax2+b2x+1,
∴f′(x)=x2+2ax+b2,
要满足题意需x2+2ax+b2=0有两不等实根,
即△=4(a2-b2)>0,即a>b,
又a,b的取法共3×3=9种,
其中满足a>b的有(1,0),(2,0),(2,1),
(3,0),(3,1),(3,2)共6种,
故所求的概率为P=$\frac{6}{9}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意导数性质、根的判别式、等可能事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com