精英家教网 > 高中数学 > 题目详情
1.在△ABC中,已知c=13,cosA=$\frac{5}{13}$
(1)若a=36,求sinC的值
(2)若△ABC的面积为6,分别求a、b的值.

分析 (1)利用同角三角函数基本关系式、正弦定理即可得出.
(2)利用三角形面积计算公式、余弦定理即可得出.

解答 解:(1)在△ABC中,∵$cosA=\frac{5}{13}>0,且0<A<π$,
∴$sinA=\sqrt{1-{{cos}^2}A}=\frac{12}{13}$,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,∴$sinC=\frac{csinA}{a}=\frac{1}{3}$.
(2)∵${S_{△ABC}}=\frac{1}{2}bcsinA=6,c=13$,∴b=1.
由余弦定理得a2=b2+c2-2bccosA=160,∴$a=4\sqrt{10}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,A=$\frac{π}{3}$,b=2,其面积S=2$\sqrt{3}$,则△ABC的外接圆的直径为(  )
A.8B.4C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>0,设命题p:函数y=lg(ax2-x+$\frac{a}{16}$)的定义域为R;命题q:当x∈[$\frac{1}{2}$,2]时,函数y=x+$\frac{1}{x}$>$\frac{1}{a}$恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.根据下列条件分别求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为$\frac{4}{3}\sqrt{5}$和$\frac{2}{3}\sqrt{5}$,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和$B(\frac{1}{2},\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\frac{sinα}{cosα}=2$,则4sin2α-3sinαcosα-5cos2α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线x-y=2被圆(x-1)2+(y+a)2=4所截的弦长为2$\sqrt{2}$,则实数a的值(  )
A.-2或6B.0或4C.-1 或$\sqrt{3}$D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若双曲线M:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{6}$=1(m>0)的焦距为4$\sqrt{2}$,则双曲线N:x2-$\frac{{y}^{2}}{m}$=1的渐近线方程为(  )
A.y=$±\sqrt{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±2$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\sqrt{3}$sin2x+2cos2x-m,a,b,c分别是△ABC的三个内角A,B,C所对的边,已知b+c=2,f(A)=-1,在使得函数f(x)在[0,$\frac{π}{2}$]上有零点的所有m的取值中,当m取得最大值时,实数a的最小值为(  )
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案