精英家教网 > 高中数学 > 题目详情
7.在△ABC中,A=$\frac{π}{3}$,b=2,其面积S=2$\sqrt{3}$,则△ABC的外接圆的直径为(  )
A.8B.4C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

分析 先根据三角形面积公式求得c边的长,进而利用余弦定理求得b,最后根据正弦定理,求得三角形外接圆的直径.

解答 解:在△ABC中,∵S=$\frac{1}{2}$bcsinA=2,
∴$\frac{1}{2}$×2×c×sin60°=2$\sqrt{3}$,
∴c=4,
∴a2=b2+c2-2bccosA=4+16-2×2×4×cos60°,
∴a2=12,a=2$\sqrt{3}$.
∴△ABC的外接圆的直径等于$\frac{a}{sinA}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4.
故选:B.

点评 本题主要考查了正弦定理和余弦定理的应用.作为正弦定理和余弦定理的变形公式也应熟练掌握,以便做题时方便使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\left\{\begin{array}{l}{x^2}+2x+2\\-{x^2}\end{array}\right.\begin{array}{l},{x≤0}\\,{x>0}\end{array}$若实数a满足f(f(a))=2,则实数a的所有取值的和为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sinα=$\frac{1}{3}$,α是第二象限角,则sin4α=-$\frac{56\sqrt{2}}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22017],则函数f(x)=log2x在∈[1,22017]上的“均值”为$\frac{2017}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合U={1,2,3,4,5},M={1,2,5},N={2,3,5},则M∪(∁UN)=(  )
A.{1}B.{1,2,3,5}C.{1,2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a2=4,a1+a5=14,
(1)求数列{an}的通项公式an
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,使f(x)≥-1成立的x的取值范围是[-4,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=-f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)-ln|x|的零点个数为3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知c=13,cosA=$\frac{5}{13}$
(1)若a=36,求sinC的值
(2)若△ABC的面积为6,分别求a、b的值.

查看答案和解析>>

同步练习册答案