分析 根据题意,函数g(x)=f(x)-ln|x|的零点个数即函数y=f(x)的图象与函数y=ln|x|的图象交点的个数;进而根据题意,分析函数y=f(x)的周期与解析式,再由函数图象变换的规律分析函数y=ln|x|的图象,在同一坐标系中做出y=f(x)的图象与y=ln|x|的图象,即可得其图象交点的个数,即可得答案.
解答
解:根据题意,函数g(x)=f(x)-ln|x|的零点个数即函数y=f(x)的图象与函数y=ln|x|的图象交点的个数;
对于f(x)有f(x+1)=-f(x),
设-1≤x<0,则0≤x+1<1,此时有f(x)=-f(x+1)=-(x+1),
又由f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),
即函数f(x)的周期为2;
在同一坐标系中做出y=f(x)的图象与y=ln|x|的图象,可得其有三个交点,
即函数g(x)=f(x)-ln|x|有3个零点;
故答案为:3
点评 本题考查抽象函数的应用,关键在于根据题意,分析出函数f(x)的解析式以及图象.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | $\frac{8\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (0,1) | C. | (-1,1) | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$±\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com