| A. | (-2,2) | B. | (0,1) | C. | (-1,1) | D. | (-1,0) |
分析 根据已知的约束条件,画出满足约束条件的可行域,再用图象判断,求出目标函数的最大值.
解答 解:画出$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$可行域如图所示,![]()
其中A($\frac{1}{2}$,$\frac{1}{2}$),C(0,1),O(0,0),
若目标函数z=ax+y仅在点($\frac{1}{2}$,$\frac{1}{2}$)取得最大值,
由图知,直线z=ax+y的斜率小于直线x-y=0的斜率,大于直线x+y-1=0的斜率,
即-1<-a,-a<1,
解得a∈(-1,1).
故选:C.
点评 本题考查的知识点是线性规划,处理的思路为:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com