精英家教网 > 高中数学 > 题目详情
1.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$,若目标函数z=ax+y(其中a为常数)仅在点($\frac{1}{2}$,$\frac{1}{2}$)处取得最大值,则实数a的取值范围是(  )
A.(-2,2)B.(0,1)C.(-1,1)D.(-1,0)

分析 根据已知的约束条件,画出满足约束条件的可行域,再用图象判断,求出目标函数的最大值.

解答 解:画出$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$可行域如图所示,

其中A($\frac{1}{2}$,$\frac{1}{2}$),C(0,1),O(0,0),
若目标函数z=ax+y仅在点($\frac{1}{2}$,$\frac{1}{2}$)取得最大值,
由图知,直线z=ax+y的斜率小于直线x-y=0的斜率,大于直线x+y-1=0的斜率,
即-1<-a,-a<1,
解得a∈(-1,1).
故选:C.

点评 本题考查的知识点是线性规划,处理的思路为:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知正方体ABCD-A1B1C1D1的棱长为a,M,N分别是棱AA1,CC1的中点,
(Ⅰ)求正方体ABCD-A1B1C1D1的内切球的半径与外接球的半径之比;
(Ⅱ)求四棱锥A-MB1ND的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a2=4,a1+a5=14,
(1)求数列{an}的通项公式an
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.利用函数的性质(如单调性与奇偶性)来解不等式是我们常用方法,通过下列题组体会此方法的适用范围及应注意什么问题?
(1)已知函数f(x)=x|x-2|,则不等式f($\sqrt{2}$-x)≤f(1)的解集为[-1,+∞).
(2)已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]恒成立,则实数t的最大值是$\sqrt{2}$-1.
(3)已知函数f(x)=$\left\{\begin{array}{l}{2,x>1}\\{(x-1)^{2}+2,x≤1}\end{array}$,则不等式f(1-x2)>f(2x)的解集是{x|x<-1-$\sqrt{2}$ 或 x>-1+$\sqrt{2}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=-f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)-ln|x|的零点个数为3个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第5个“金鱼”图需要火柴的根数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知F1,F2,A分别为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点及上顶点△AF1F2的面积为4$\sqrt{3}$且椭圆的离心率等于$\frac{{\sqrt{3}}}{2}$,过点M(0,4)的直线l与椭圆相交于不同的两点P、Q,点N在线段PQ上.
(1)求椭圆的标准方程;
(2)设$\frac{{|{\overrightarrow{PM}}|}}{{|{\overrightarrow{PN}}|}}$=$\frac{{|{\overrightarrow{MQ}}|}}{{|{\overrightarrow{NQ}}|}}$=λ,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义A?B={y|y=ax,a∈A,x∈B},其中$A=\{\frac{1}{2},2\}$,B={0,1},则A?B中所有元素的积等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线$f(x)={x^3}+\sqrt{x}$在点(1,2)处的切线方程7x-2y-3=0.

查看答案和解析>>

同步练习册答案