分析 利用同角三角函数的基本关系,二倍角公式,求得cosα、sin2α、cos2α的值,可得sin4α的值.
解答 解:∵sinα=$\frac{1}{3}$,α是第二象限角,∴α∈(2kπ+$\frac{5π}{6}$,2kπ+π),cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=-$\frac{4\sqrt{2}}{9}$.
再根据2α∈(4kπ+$\frac{5π}{3}$,4kπ+2π),k∈Z,∴cos2α=$\sqrt{{1-sin}^{2}2α}$=$\frac{7}{9}$,
则sin4α=2sin2αcos2α=-$\frac{56\sqrt{2}}{81}$,
故答案为:-$\frac{56\sqrt{2}}{81}$.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2和3$\sqrt{5}$ | B. | ±2和3$\sqrt{5}$ | C. | ±2和7 | D. | 2和7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ①④ | C. | ③④ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | $\frac{8\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com