精英家教网 > 高中数学 > 题目详情
11.设圆C的半径为1,圆心C在直线3x-y=0上
(Ⅰ)直线x-y+3=0被圆C截得弦长$\sqrt{2}$,求圆C的方程;
(Ⅱ)设A(0,3),若圆C上总存在两个不同的点到A的距离为2,求圆心C的横坐标的取值范围.

分析 (Ⅰ)若圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,利用勾股定理,即可求圆C的标准方程;
(Ⅱ)由题意,问题等价于圆A和圆C相交时,求圆心C横坐标a的取值范围.

解答 解:(Ⅰ)因为圆心C在直线3x-y=0上,所以设圆心C的坐标为(a,3a),
因为圆C的半径为1,圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,
所以圆心C到直线x-y+3=0的距离d=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
又d=$\frac{|a-3a+3|}{\sqrt{2}}$=$\frac{|2a-3|}{\sqrt{2}}$,所以$\frac{|2a-3|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
解得a=1或a=2,所以圆心C的坐标为(1,3)或(2,6).
所以圆C的标准方程为:(x-1)2+(y-3)2=1或(x-2)2+(y-6)2=1.(6分)
(Ⅱ)设圆A:x2+(y-3)2=4,由(Ⅰ)设圆心C的坐标为(a,3a).
由题意,问题等价于圆A和圆C相交时,求圆心C横坐标a的取值范围,即1<$\sqrt{{a}^{2}+(3a-3)^{2}}$<3,
由$\sqrt{{a}^{2}+(3a-3)^{2}}$>1整理得5a2-9a+4>0,解得a<$\frac{4}{5}$或a>1;
由$\sqrt{{a}^{2}+(3a-3)^{2}}$<3整理得5a2-9a<0,解得0<a<$\frac{9}{5}$.
所以0<a<$\frac{4}{5}$或1<a<$\frac{9}{5}$.(6分)

点评 本题考查圆的方程的应用,直线与圆的位置关系,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(1)求a的取值范围;
(2)已知 g(x) 图象与 y=f(x) 图象关于x=1对称,证明:当  x<1 时,f(x)<g(x).
(3)设x1,x2是的两个零点,证明:x1+x2<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设P,Q分别为圆x2+(y-6)2=2和椭圆$\frac{{x}^{2}}{10}$+y2=1上的点,则P,Q两点间的最大距离是6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了了解学生的体能情况,抽取了某学校同年级部分学生作为样本进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第四小组的频数为10.
(1)求样本容量n
(2)根据样本频率分布直方图,估计学生跳绳次数的中位数(保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(x-2y)6展开式中二项式系数最大的项的系数为-160(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是(  )
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=3sin($\frac{π}{4}$-2x),则其单调递增区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

查看答案和解析>>

同步练习册答案