分析 利用诱导公式化简函数的解析式,再利用正弦函数的单调性求得函数的增区间.
解答 解:函数y=3sin($\frac{π}{4}$-2x)=-3sin(2x-$\frac{π}{3}$),令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,可得函数的增区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,
故答案为:[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
点评 本题主要考查诱导公式,正弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 认为作业多 | 认为作业不多 | 合计 | |
| 喜欢玩手机游戏 | 18 | 2 | |
| 不喜欢玩手机游戏 | 6 | ||
| 合计 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16π}{3}$ | B. | $\sqrt{6}π$ | C. | $\frac{{\sqrt{6}π}}{2}$ | D. | $4\sqrt{6}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆A | C. | A=B | D. | A?B |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com