| A. | $\frac{16π}{3}$ | B. | $\sqrt{6}π$ | C. | $\frac{{\sqrt{6}π}}{2}$ | D. | $4\sqrt{6}π$ |
分析 根据题意,球心O为正方体的底面ABCD的中心,由正方体的性质与勾股定理算出球半径R=3,再利用球的体积公式加以计算,可得该半球的体积.
解答
解:设正方形ABCD-A'B'C'D'的底面ABCD在半球的底面圆上,
则球心O为ABCD的中心,连结OA'
∵正方体的一边长为1,
∴A0=$\frac{\sqrt{2}}{2}$,可得A'O=$\sqrt{1+\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$,
即半球的半径R=$\frac{\sqrt{6}}{2}$,
因此,半球的体积V=$\frac{1}{2}×\frac{4π}{3}×(\frac{\sqrt{6}}{2})^{3}$=$\frac{\sqrt{6}}{2}$π
故选:C.
点评 本题给出正方体内接于半球内,在已知正方体棱长的情况下求半球的体积,着重考查了正方体的性质、勾股定理和球的体积公式等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 性别 专业 | 非统计专业 | 统计专业 |
| 男 | 15 | 10 |
| 女 | 5 | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{3}{28}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com