精英家教网 > 高中数学 > 题目详情
3.(x-2y)6展开式中二项式系数最大的项的系数为-160(用数字作答).

分析 (x-2y)6展开式中二项式系数最大的项是T4=${∁}_{6}^{3}$x3(-2y)3,化简即可得出.

解答 解:(x-2y)6展开式中二项式系数最大的项是T4=${∁}_{6}^{3}$x3(-2y)3=-160x3y3,其系数为-160.
故答案为:-160.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.利用函数的性质(如单调性与奇偶性)来解不等式是我们常用方法,通过下列题组体会此方法的适用范围及应注意什么问题?
(1)已知函数f(x)=x|x-2|,则不等式f($\sqrt{2}$-x)≤f(1)的解集为[-1,+∞).
(2)已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]恒成立,则实数t的最大值是$\sqrt{2}$-1.
(3)已知函数f(x)=$\left\{\begin{array}{l}{2,x>1}\\{(x-1)^{2}+2,x≤1}\end{array}$,则不等式f(1-x2)>f(2x)的解集是{x|x<-1-$\sqrt{2}$ 或 x>-1+$\sqrt{2}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义A?B={y|y=ax,a∈A,x∈B},其中$A=\{\frac{1}{2},2\}$,B={0,1},则A?B中所有元素的积等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设圆C的半径为1,圆心C在直线3x-y=0上
(Ⅰ)直线x-y+3=0被圆C截得弦长$\sqrt{2}$,求圆C的方程;
(Ⅱ)设A(0,3),若圆C上总存在两个不同的点到A的距离为2,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$
(I)记F(x)=f(x)-g(x),证明F(x)在(1,2)区间内有且仅有唯一实根;
(Ⅱ)记F(x)在(1,2)内的实根为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0),过点(m,0)作一直线交抛物线于A(x1,y1),B(x1,y1)两点,若kOA•kOB=-2,则m的值为(  )
A.$\frac{p}{2}$B.pC.2pD.$\frac{3p}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线$f(x)={x^3}+\sqrt{x}$在点(1,2)处的切线方程7x-2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了检验“喜欢玩手机游戏与认为作业多”是否有关系,某班主任对班级的30名学生进行了调查,得到一个2×2列联表:
(1)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);
认为作业多认为作业不多合计
喜欢玩手机游戏182
不喜欢玩手机游戏6
合计30
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(2)能否在犯错误的概率不超过0.005的前提下认为“喜欢玩手机游戏”与“认为作业多”有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知边长为1的正方体内接于半球体,即正方体的顶点中,有四点在球面上,另外四点在半球体的底面圆内,则半球体的体积为(  )
A.$\frac{16π}{3}$B.$\sqrt{6}π$C.$\frac{{\sqrt{6}π}}{2}$D.$4\sqrt{6}π$

查看答案和解析>>

同步练习册答案