精英家教网 > 高中数学 > 题目详情
计算:
(1)(x
1
2
x
1
3
6    
(2)lg5+log36+lg2-log32.
考点:对数的运算性质,有理数指数幂的化简求值
专题:函数的性质及应用
分析:(1)利用分数指数幂的运算法则求解.
(2)利用对数的运算法则求解.
解答: 解:(1)(x
1
2
x
1
3
6    
=x3x2
=x5
(2)lg5+log36+lg2-log32
=(lg5+lg2)+(log36-log32)
=1+1=2.
点评:本题考查对数式和指数式的求值,是基础题,解题时要认真审题,注意运算法则的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)的最小值为1,f(0)=f(2)=3,g(x)=f(x)-ax (a∈R).
(1)求f(x)的解析式;
(2)若g(x)在[-1,1]上的最小值为1,求实数a的值;
(3)若在区间[-1,1]上,y=g(x)的图象恒在y=2x+7的图象下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(m+1)3<(3-2m)3,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ为参数,且0≤θ<π.
(1)当θ=0时,判断函数f(x)是否有极值,说明理由;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax(a∈R),
(1)当a=2时,求y=f(x)在点x=1的切线方程;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;
(3)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2CD=2.
(Ⅰ)求证:DF∥平面ABE;
(Ⅱ)求直线AF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:方程
x2
4-t
+
y2
t-2
=1所表示的曲线为焦点在x轴上的椭圆;命题q:曲线y=x2+(2t-3)x+1与x轴交于不同的两点.如果“p∨q”为真,“p∧q”为假,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

公差不为0的等差数列{an}的前21项的和等于前8项的和,若a8+ak=0,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos2x+sin2x的最小值是
 

查看答案和解析>>

同步练习册答案