精英家教网 > 高中数学 > 题目详情

已知函数,是否存在实数,使函数在上递减,在上递增?若存在,求出所有值;若不存在,请说明理由.

存在  

解析试题分析:存在          

,得           6分
时,
,不符题意,舍;--8分
时,
,在
即函数在上递减,在上递增  所以  12分
考点:函数单调性与导数
点评:由已知条件可得是函数的极小值点,除考虑处导数为零外还要看在处左侧是否导数小于零,右侧是否导数大于零

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数,e是自然对数的底数.
(Ⅰ)当时,证明恒成立;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对任意的恒成立,求实数的最小值.
(2)若且关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)设各项为正的数列满足:求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当a=18时,求函数的单调区间;
(II)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数处的切线与轴垂直,求的极值。
(2)若函数,求实数a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中R .
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数, 当时,若存在,对于任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列定积分(本小题满分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

同步练习册答案