精英家教网 > 高中数学 > 题目详情

已知函数,,其中R .
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数, 当时,若存在,对于任意的,总有成立,求实数的取值范围.

(1)①当时,上单调递增;                    
②当时,由,得;由,得
上单调递减,在上单调递增.
(2)
(3)

解析试题分析:(1)的定义域为,且
①当时,上单调递增;                    
②当时,由,得;由,得
上单调递减,在上单调递增.                      
(2)的定义域为                        
因为在其定义域内为增函数,所以
 
,当且仅当时取等号,所以                                               
(3)当时,
,当时,;当时,
所以在上,                      
上的最大值为

所以实数的取值范围是    
考点:导数的运用
点评:解决的关键是能根据导数的符号分类讨论得到函数单调性,以及根据极值来得到最值,解决不等式的成立,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值与函数的单调区间;
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,是否存在实数,使函数在上递减,在上递增?若存在,求出所有值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分8分)已知,函数.
(Ⅰ)求的极值(用含的式子表示);
(Ⅱ)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调区间
(2)设函数=,求证:当时,有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ) 当时,设函数的3个极值点为,且.
证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)求函数的最小值;
(2)若≥0对任意的恒成立,求实数的值;
(3)在(2)的条件下,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案