精英家教网 > 高中数学 > 题目详情
16.直线l:y-1=k(x+2)与线段BC相交,设B(-1,0)、C(1,0),则直线l的斜率k的取值范围是[-1,-$\frac{1}{3}$].

分析 由题意画出图形,求出定点与线段两端点连线的斜率,数形结合得答案.

解答 解:∵直线l:y-1=k(x+2)过定点P(-2,1),
如图,

∵${k}_{PB}=\frac{1-0}{-2-(-1)}=-1$,${k}_{PC}=\frac{1-0}{-2-1}=-\frac{1}{3}$,
∴直线l的斜率k的取值范围是[-1,-$\frac{1}{3}$].
故答案为:[-1,-$\frac{1}{3}$].

点评 本题考查由直线和线段相交求直线斜率的范围,考查了数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设f是集合M={a,b,c,d}到N={1,2,3}的映射,且有f(a)+f(b)+f(c)+f(d)=9,那么映射f的个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(3)=2,则f(2015)的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=|sinx|+2|cosx|的值域为[1,$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinθcosθ=$\frac{1}{3}$,则cos2(θ+$\frac{π}{4}$)的值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinθ+cosθ=-$\frac{1}{5}$(-$\frac{π}{2}$<θ<0),求下列各式的值:tanθ+cotθ,sin2θ,sinθ-cosθ,cos4θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sinα=$\frac{3}{5}$,且tanα<0,则cosα=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.复数$\frac{{i}^{2}+{i}^{3}+{i}^{4}}{1-i}$=$\frac{1}{2}$-$\frac{1}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设z1、z2、z3为互不相等的复数,且z1z2=z32,z2z3=z12,则z1+z2+z3=0.

查看答案和解析>>

同步练习册答案