ÉèÎÞÇîÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Ç°nÏîºÍΪSn£¨n¡ÊN*£©£¬ÇÒ3tSn-£¨2t+3£©Sn-1=3t£¨n¡ÊN*£¬n¡Ý2£©£¨tÊÇÓënÎ޹صÄÕýʵÊý£©
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}£¨n¡ÊN*£©ÎªµÈ±ÈÊýÁУ»
£¨2£©¼ÇÊýÁÐ{an}µÄ¹«±ÈΪf£¨t£©£¬ÊýÁÐ{bn}Âú×ãb1=1£¬bn=f£¨
1
bn-1
£©£¨n¡ÊN*£¬n¡Ý2£©£¬Éècn=b2n-1b2n-b2nb2n+1£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®
£¨3£©Èô£¨2£©ÖÐÊýÁÐ{cn}µÄǰnÏîºÍTn£¬µ±n¡ÊN*ʱ£¬²»µÈʽTn¡Üaºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©µ±n¡Ý2ʱ£¬3tSn-£¨2t+3£©Sn-1=3t£¬3tSn+1-£¨2t+3£©Sn=3t£¬Á½Ê½Ïà¼õ¿ÉµÃÊýÁÐ{an}ÊǵȱÈÊýÁУ»
£¨2£©ÀûÓã¨1£©¿ÉµÃf£¨t£©£¬½ø¶øµÃµ½ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÊýÁÐ{cn}Ò²ÊǵȲîÊýÁУ¬¼´¿ÉµÃ³öǰnÏîºÍTn£»
£¨3£©ÀûÓã¨2£©ºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð£º £¨1£©Ö¤Ã÷£ºµ±n¡Ý2ʱ£¬3tSn-£¨2t+3£©Sn-1=3t£¬3tSn+1-£¨2t+3£©Sn=3t£¬
¡à3tan+1-£¨2t+3£©an=0£¬
¡ßt£¾0ÇÒÊdz£Êý£¬¡à
an+1
an
=
2t+3
3t
£¬
¡àÊýÁÐ{an}£¨n¡ÊN*£©Êǹ«±ÈΪ
2t+3
3t
µÄµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ£¨1£©¿ÉÖª£ºf£¨t£©=
2t+3
3t
=
1
t
+
2
3
£¨t£¾0£©£®
¡ßÊýÁÐ{bn}Âú×ãb1=1£¬bn=f£¨
1
bn-1
£©£¬
¡àbn=bn-1+
2
3
£¨n¡Ý2£©£¬
¡àÊýÁÐ{bn}Êǹ«²îΪ
2
3
µÄµÈ²îÊýÁУ¬
¡àbn=1+
2
3
(n-1)
=
2n+1
3
£®
¡àcn=b2n-1b2n-b2nb2n+1=
4n-1
3
¡Á
4n+1
3
-
4n+1
3
¡Á
4n+3
3
=-
16
9
n-
4
9
£®
¡àÊýÁÐ{cn}ÊǵȲîÊýÁУ¬¹«²îΪ-
16
9
£¬Ê×ÏîΪ-
20
9
£®
¡àTn=-
20
9
n+
n(n-1)
2
¡Á(-
16
9
)
=-
8
9
n2-
4
3
£®
£¨3£©¡ßµ±n¡ÊN*ʱ£¬²»µÈʽTn¡Üaºã³ÉÁ¢£¬
¡àa¡Ý£¨Tn£©max£¬¶Ô?n¡ÊN*£¬
¶øTn=-
8
9
n2-
4
3
¡ÜT1=-
8
9
-
4
3
=-
20
9
£®
¡àa¡Ý-
20
9
£®
¼´ÊµÊýaµÄȡֵ·¶Î§ÊÇ[-
20
9
£¬+¡Þ)
£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÊýÁеĵÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°Ç°nÏîºÍ¹«Ê½¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢ºã³ÉÁ¢ÎÊÌâµÄµÈ¼Ûת»¯µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ|x+3|-|x-1|¡Üa2-3a¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£¬ÔòÕýʵÊýaµÄȡֵ·¶Î§
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂÃüÌ⣺
£¨1£©ÔÚ¿Õ¼äÀ´¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½¸öÆ½ÃæÆ½ÐУ»
£¨2£©Á½ÌõÒìÃæÖ±ÏßÔÚͬһ¸öÆ½ÃæÉϵÄÉäÓ°²»¿ÉÄÜÆ½ÐУ»
£¨3£©Á½¸ö²»ÖØºÏµÄÆ½Ãæ¦ÁÓë¦Â£¬Èô¦ÁÄÚÓв»¹²ÏßµÄÈý¸öµãµ½¦ÂµÄ¾àÀëÏàµÈ£¬Ôò¦Á¡Î¦Â£»
£¨4£©²»ÖغϵÄÁ½Ö±Ïßa£¬bºÍÆ½Ãæ¦Á£¬Èôa¡Îb£¬b?¦Á£¬Ôòa¡Î¦Á£®
ÆäÖÐÕýÈ·ÃüÌâ¸öÊýÊÇ£¨¡¡¡¡£©
A¡¢0B¡¢1C¡¢2D¡¢3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚRÉϵĺ¯Êýy=f£¨x£©ÊǼõº¯Êý£¬ÇÒº¯Êýy=f£¨x-2£©µÄͼÏó¹ØÓڵ㣨2£¬0£©³ÉÖÐÐĶԳƣ¬Èôm£¬nÂú×ã²»µÈʽf£¨m2-2m£©+f£¨2n-n2£©¡Ü0£®Ôòµ±1¡Üm¡Ü4ʱ£¬
n
m
µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢[-
1
4
£¬1£©
B¡¢[-
1
4
£¬1]
C¡¢[-
1
2
£¬1£©
D¡¢[-
1
2
£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô|
b
|=2|
a
|¡Ù0£¬
c
¡Í
a
£¬
c
=
a
+
b
£¬Ôò
a
Óë
b
µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A¡¢30¡ãB¡¢60¡ã
C¡¢90¡ãD¡¢120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=ex£¬g£¨x£©=mx+n£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×£¬m£¬n¡ÊR£®
£¨¢ñ£©Èôm=1ʱ·½³Ìf£¨x£©-g£¨x£©=0ÔÚ[-1£¬1]ÉÏÇ¡ÓÐÁ½¸öÏàÒìʵ¸ù£¬ÇónµÄȡֵ·¶Î§£»
£¨¢ò£©ÈôF£¨x£©=f£¨x£©g£¨x£©£¬ÇÒn=1-m£¬ÇóF£¨x£©ÔÚ[0£¬1]ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êý¢Ùy=f£¨x+1£©Ó뺯Êý¢Úy=f£¨1-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ¶ÔÂð£¿Èô¢Ú±äΪy=-f£¨1-x£©£¬¢ÙºÍ¢ÚÓÖ¹ØÓÚʲô¶Ô³Æ£®»¹ÓÐʲôÑùµÄÐÎʽ±ä»¯Ê¹µÃ¢ÙºÍ¢ÚÓв»Í¬µÄÇé¿ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬Âú×ãf£¨x+y£©=f£¨x£©•f£¨y£©£¬ÇÒµ±x£¾0ʱ£¬0£¼f£¨x£©£¼1
£¨1£©ÇóÖ¤£ºf£¨0£©=1£»
£¨2£©ÇóÖ¤£ºµ±x¡ÊR ʱ£¬ºãÓÐf£¨x£©£¾0£»
£¨3£©ÇóÖ¤£ºf£¨x£©ÔÚ R ÉÏÊǼõº¯Êý£»
£¨4£©Èôf£¨2£©=
1
9
£¬Çó²»µÈʽf£¨x£©•f£¨3x2-1£©£¼
1
27
µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=t-1
y=2t+1
£¨tΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£¬ÉèÇúÏßC1£¬C2ÏཻÓÚA¡¢BÁ½µã£¬Ôò|AB|µÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸