精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C上的动点P)满足到定点A(-1,0)的距离与到定点B1,0)距离之比为

(1)求曲线C的方程。

(2)过点M(1,2)的直线与曲线C交于两点MN,若|MN|=4,求直线的方程。

【答案】1(或);(2.

【解析】

试题分析:(1)根据动点Pxy)满足到定点A-10)的距离与到定点B10)距离之比,建立方程,化简可得曲线C的方程.

2)分类讨论,设出直线方程,求出圆心到直线的距离,利用勾股定理,即可求得直线l的方程.

试题解析:(1)由题意得|PA|=|PB| 2;

3;

化简得:(或)即为所求。 5;

2)当直线的斜率不存在时,直线的方程为

代入方程

所以|MN|=4,满足题意。 8;

当直线的斜率存在时,设直线的方程为+2

由圆心到直线的距离10;

解得,此时直线的方程为

综上所述,满足题意的直线的方程为:12.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若椭圆的中心在原点,焦点在轴上,点是椭圆上的一点,轴上的射影恰为椭圆的左焦点,与中心的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于,试求椭圆的离心率及其方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:

P(K2≥k)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(ωx﹣ )+b(ω>0),且函数图象的对称中心到对称轴的最小距离为 ,当x∈[0, ]时,f(x)的最大值为1.
(1)求函数f(x)的解析式;
(2)将函数f(x)的图象向右平移 个单位长度得到函数g(x)图象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案