【题目】设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
【答案】
(1)
解:设A(x1, ),B(x2, )为曲线C:y= 上两点,
则直线AB的斜率为k= = (x1+x2)= ×4=1;
(2)
设直线AB的方程为y=x+t,代入曲线C:y= ,
可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,
再由y= 的导数为y′= x,
设M(m, ),可得M处切线的斜率为 m,
由C在M处的切线与直线AB平行,可得 m=1,
解得m=2,即M(2,1),
由AM⊥BM可得,kAMkBM=﹣1,
即为 =﹣1,
化为x1x2+2(x1+x2)+20=0,
即为﹣4t+8+20=0,
解得t=7.
则直线AB的方程为y=x+7.
【解析】(1.)设A(x1 , ),B(x2 , ),运用直线的斜率公式,结合条件,即可得到所求;
(2.)设M(m, ),求出y= 的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m,即有M的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x1 , x2的关系式,再由直线AB:y=x+t与y= 联立,运用韦达定理,即可得到t的方程,解得t的值,即可得到所求直线方程.
【考点精析】解答此题的关键在于理解直线的斜率的相关知识,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.
科目:高中数学 来源: 题型:
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网”,符合“低碳出行”的理念,已越来越多地引起了人们的关注某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值百分制按照,,,分成5组,制成如图所示频率分直方图.
求图中x的值;
求这组数据的平均数和中位数;
已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求恰有1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,若互不相等的实数x1 , x2 , x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是( )
A.( ]
B.( )
C.( ]
D.( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com