精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,过A点的截面AEFG分别交PB,PC,PD于点E,F,G,且PB⊥AE,PD⊥AG.下列结论正确的是
 
(写出所有正确结论的编号).
①BD∥平面AEFG;
②PC⊥平面AEFG;
③EF∥平面PAD;
④点A,B,C,D,E,F,G在同一球面上;
⑤若PA=AB=1,则四棱锥O-AEFG的体积为
1
9
考点:空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离
分析:①证明EG∥BD,可得结论;②证明AE⊥PC,AG⊥PC,即可证明PC⊥平面AEFG;③利用反证法可以得出结论;
④由②可知OA=OB=OC=OD=OE=OF=OG=
1
2
AC,故点A,B,C,D,E,F,G在同一球面上;⑤若连接AF,取AF的中点M,连接OM,可求四棱锥O-AEFG的体积.
解答: 解:∵PB⊥AE,PD⊥AG,AB=AD,∴PB=PD,PE=PG,∴EG∥BD,∴BD∥平面AEFG,∴①正确;    
由已知可得BC⊥平面PAB,CD⊥平面PAD,∴AE⊥BC,AG⊥CD,∵PB⊥AE,PD⊥AG,∴AE⊥PC,AG⊥PC,
∴PC⊥平面AEFG,∴②正确;
由②可知EF⊥PC,∴EF与BC必相交,假设EF∥平面PAD,由BC∥平面PAD,可得平面PAD∥平面PBC,显然矛盾,∴③错误;
由②可知OA=OB=OC=OD=OE=OF=OG=
1
2
AC,∴点A,B,C,D,E,F,G在同一球面上,∴④正确;
连接AF,取AF的中点M,连接OM,则OM∥PC,∴OM⊥平面AEFG,由已知可得AE=
2
2
,AF=
6
3
,∴EF=
6
6
,OM=
3
3
,∴四棱锥O-AEFG的体积V=
AE•EF•OM
3
=
1
18
,∴⑤错误.
故答案为:①②④.
点评:本题考查空间中直线与直线之间的位置关系,考查学生分析解决问题的能力,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“?x∈R,都有x2-2x+2≠0”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+blnx在x=1处有极值
1
2

(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①若向量
a
b
共线,则向量
a
b
所在的直线平行;
②若向量
a
b
所在的直线为异面直线,则向量
a
b
一定不共面;
③若三个向量
a
b
c
两两共面,则向量
a
b
c
共面;
④共面的三个向量是指平行于同一个平面的三个向量;
⑤已知空间的三个不共线的向量
a
b
c
,则对于空间的任意一个向量
p
总存在实数x,y,z使得
p
=x
a
+y
b
+z
c

其中正确命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上,到直线的距离等于定长的点的轨迹是两条平行直线.类比在空间中:
(1)到定直线的距离等于定长的点的轨迹是
 

(2)到已知平面相等的点的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知asinA=bsinB,那么△ABC的形状
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数组x1,x2,…,xn,记它们中最小的数为f(x1,x2,…,xn),给出下述结论:
①函数y=f(4x,2-3x)的图象为一条直线;
②函数y=f(x,2-x)的最大值等于1;
③函数y=f(x2+2x,x2-2x)一定为偶函数;
④对a>0,b>0,f(a,b,
1
a2+b2
)的最大值为
3
1
2

其中,正确命题的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:
(1)[25,30)年龄组对应小矩形的高度为
 

(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设某离散型随机变量ξ的概率分布列如下表,则p的值为(  )
ξ 1 2 3 4
P
1
6
1
3
1
3
p
 
A、
1
8
B、
1
6
C、
1
4
D、
1
2

查看答案和解析>>

同步练习册答案