精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是棱PD的中点.
(Ⅰ)若θ=60°,求证:AE⊥平面PCD;
(Ⅱ)求θ的值,使二面角P-CD-A的平面角最小.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知条件推导CD⊥AD,PA⊥CD.从而得到CD⊥AE.由此能证明AE⊥平面PCD.
(Ⅱ)建立空间直角坐标系A-xyz,利用向量法能求出要使α最小,则cosα最大,由此能求出结果.
解答: (Ⅰ)证明:当θ=60°时,
∵AD∥BC,AB=AD=2BC=2.
∴CD⊥AD.
又PA⊥平面ABCD,∴PA⊥CD.
∴CD⊥平面PAD.
又AE?平面PAD,∴CD⊥AE.
又PA=AD,E是棱PD的中点,
∴PD⊥AE.
∵PD∩CD=D,∴AE⊥平面PCD.(7分)
(Ⅱ)解:如图,建立空间直角坐标系A-xyz,
则P(0,0,2),B(2sinθ,2cosθ,0),
C(2sinθ,2cosθ+1,0),D(0,2,0).
DP
=(0,-2,2)
DC
=(2sinθ,2cosθ-1,0)

设平面PCD的法向量为
n
=(x,y,z)

n
DP
n
DC
-2y+2z=0
(2sinθ)x+(2cosθ-1)y=0

取y=1,得
n
=(
2cosθ-1
2sinθ
,1,1)

又平面ABCD的法向量为
m
=(0,0,1)

设二面角P-CD-A的平面角为α,
cosα=
|
m
n
|
|
m
|•|
n
|
=
1
(
2cosθ-1
2sinθ
)
2
+2

要使α最小,则cosα最大,即
2cosθ-1
2sinθ
=0

cosθ=
1
2
,得θ=
π
3
.(8分)
点评:本题考查直线与平面垂直的证明,考查使二面角最小的角θ的值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项的和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上;数列{bn}满足b1=a1,bn+1(an+1-an)=bn.其中n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,求证:数列{cn}的前n项的和Tn
5
9
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:
品牌
首次出现故障时间
x年
0<x≤11<x≤22<x≤3x>30<x≤22<x≤3x>3
空调数量(台)124432345
每台利润(千元)122.52.71.52.62.8
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列;
(Ⅲ)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),g(x)都定义在实数集R上,且满足f(x)为奇函数,g(x)为偶函数,f(x)+g(x)=x2+x-2,试求函数f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,
(1)求证:AD1⊥平面CDA1B1
(2)求直线BD与平面CDA1B1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分别是PB,CD的中点.
(Ⅰ)证明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=1,∠ACB=90°,AA1=2,M,N分别是棱CC1,AB中点.
(1)求证:CN∥平面AMB1
(2)求C到平面AMB1上的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,AB⊥BC,E是A1C的中点,D在线段AC上,并且DE⊥A1C,已知A1A=AB=
2
,BC=2.
(1)求证:A1C⊥平面EDB.
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=9,求该圆中经过点A(1,2)的弦的中点P的轨迹方程.

查看答案和解析>>

同步练习册答案