精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分别是PB,CD的中点.
(Ⅰ)证明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大小.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间角
分析:(I)由等腰三角形性质得PB⊥AE,由线面垂直得AF⊥PB,由此能证明PB⊥平面 AEF.
(II)由已知条件得∠AEF是二面角A-PE-F的平面角,由此能求出二面角A-PE-F的大小.
解答: 解:(I)证明:∵PA=AB,E是PB的中点,∴PB⊥AE,
∵ABCD是菱形,∠ABC=60°,∴△ABC,△ACD是等边三角形,(1分)
∵F是CD的中点,∴AF⊥CD,
∵AB∥CD,∴AF⊥AB,(2分)
∵PA⊥面ABCD,∴PA⊥AF,
AF∩PA=A,∴AF⊥面PAB,(3分)
PB?面PAB,∴AF⊥PB,(4分)
∵AE∩PA=A,∴PB⊥平面 AEF.(5分)
(II)由(I)知,∠AEF是二面角A-PE-F的平面角,(7分)
设AB=a,则AE=
2
2
a
,AF=
3
2
a
,(9分)
在Rt△AEF中,tan∠AEF=
6
2

二面角A-PE-F的大小为arctan
6
2
.(10分)
点评:本题考查直线与平面的垂直,考查二面角的在小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且sin2C+
3
cos(A+B)=0.
(1)若a=4,c=
13
,求b的长;
(2)若C>A,A=60°,AB=5,求
AB
BC
+
BC
CA
+
CA
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+5+
-x2-2x+4
,求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥C-ABD中,AC⊥CB,AC=CB,E为AB的中点,AD=DE=EC=2,CD=2
2

(Ⅰ)求证:平面ABC⊥平面ABD;
(Ⅱ)求直线BD与平面CAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是棱PD的中点.
(Ⅰ)若θ=60°,求证:AE⊥平面PCD;
(Ⅱ)求θ的值,使二面角P-CD-A的平面角最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,直线l:y=-x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,已知AB=BC=1,CC1=2,AC1与平面BCC1B1所成角为30°,AB⊥平面BB1C1C.
(I)求证:BC⊥AC1
(Ⅱ)求二面角C-AC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=
2

(1)求证:平面PAB⊥平面ABCD.
(2)求PD与平面PAB所成角正切值.
(3)求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2
2
,AC=2,PA=2,求二面角C-PB-A的度数.

查看答案和解析>>

同步练习册答案