精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=
2

(1)求证:平面PAB⊥平面ABCD.
(2)求PD与平面PAB所成角正切值.
(3)求二面角A-PC-D的平面角的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定,点、线、面间的距离计算
专题:
分析:(1)取AB中点E,连PE、CE,证明PE⊥平面ABCD,即可证明平面PAB⊥平面ABCD
(2)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z轴,建立空间直角坐标系.求出PD与平面PAB所成角的正弦值,即可求PD与平面PAB所成角正切值.
(3)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.
解答: (1)证明:如图所示,取AB中点E,连PE、CE.
则PE是等腰△PAB的底边上的中线,∴PE⊥AB.
∵PE=1,CE=
3
,PC=2,即PE2+CE2=PC2
由勾股定理的逆定理可得,PE⊥CE.
又∵AB?平面ABCD,CE?平面ABCD,且AB∩CE=E,
∴PE⊥平面ABCD.
而PE?平面PAB,
∴平面PAB⊥平面ABCD.
(2)解:以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z轴,建立如图所示的空间直角坐标系.
则A(0,-1,0),C(
3
,0,0),D(
3
,-2,0),P(0,0,1),
PD
=(
3
,-2,-1),
EC
=(
3
,0,0),
∴PD与平面PAB所成角的正弦值为
3
3+4+1
3
=
6
4

∴PD与平面PAB所成角正切值为
15
5

(3)∵
AC
=(
3
,1,0)
PC
=(
3
,0,-1)
DC
=(0,2,0)

n
=(x,y,z)是平面PAC的一个法向量,
n
AC
=
3
x+y=0
n
PC
=
3
x-z=0

取x=1,可得y=-
3
,z=
3
,即
n
=(1,-
3
3

m
=(x,y,z)是平面PCD的一个法向量,
n
DC
=2y=0
n
PC
=
3
x-z=0

取x=1,可得y=0,z=
3
.            
m
=(1,0,
3
),
故cos<
m
n
>=
m
n
|
m
||
n
|
=
2
7
7

即二面角A-PC-D的平面角的余弦值是
2
7
7
点评:熟练掌握等腰三角形的性质、勾股定理的逆定理、线面垂直的判定定理、面面垂直、通过建立空间直角坐标系并利用两个平面的法向量的夹角得到二面角的方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1离心率是
2
,过点(
3
,1),且右支上的弦AB过右焦点F.
(1)求双曲线C的方程;
(2)求弦AB的中点M的轨迹E的方程;
(3)是否存在以AB为直径的圆过原点O?,若存在,求出直线AB的斜率k的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分别是PB,CD的中点.
(Ⅰ)证明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
1
2n
(n∈N),若bn=log 
1
2
an2,且Sn是数列{bn}的前n项和,当n≥5时,试证明anSn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,AB⊥BC,E是A1C的中点,D在线段AC上,并且DE⊥A1C,已知A1A=AB=
2
,BC=2.
(1)求证:A1C⊥平面EDB.
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-2)2=1,过P(1,0),作圆C的切线,切点A,B.
(1)求直线PA、PB的直线方程;
(2)求弦长|AB|;
(3)若Q点是x轴上的动点,过Q点作圆C的切线.切点为G、H,求四边形GCHQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1)求点A到平面PDE的距离;
(2)在PA上确定一点F,使BF∥平面PDE;
(3)求异面直线PC与DE所成的角(用反三角函数表示);
(4)求面PDE与面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k为常数).
(1)若f(x)的图象中相邻两对称轴之间的距离不小于
π
2
,求ω的取值范围;
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]时,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点P(1,1),倾斜角α=
π
6

(1)写出直线l的参数方程.
(2)设l与圆x2+y2=4相交于点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

同步练习册答案