精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2
2
,AC=2,PA=2,求二面角C-PB-A的度数.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间角
分析:(1)由圆的性质得AC⊥BC,由线面垂直得PA⊥BC,从而BC⊥平面PAC,由此能证明平面PBC⊥平面PAC.
(2)连接CO,过O在平面PAB上作OM⊥PB于M,连接CM,∠OMC是二面角C-PB-A的平面角,由此能求出二面角C-PB-A的度数.
解答: (1)证明:由AB是圆O的直径,得AC⊥BC,(1分)
由PA⊥平面ABC,BC?平面ABC,得PA⊥BC,(3分)
又PA∩AC=A,∴BC⊥平面PAC,(4分)
又BC?平面PBC,
∴平面PBC⊥平面PAC.(6分)
(2)解:连接CO,∵AB=2
2

AC=2,∴BC=2,∴AB⊥OC,(8分)
过O在平面PAB上作OM⊥PB于M,连接CM,
由三垂线定理CM⊥PB,
∴∠OMC是二面角C-PB-A的平面角,(10分)
∵OC是圆半径,∴OC=
2

由△BOM∽△BPA,得OM=
2
3

在Rt△OMC中,tan∠OMC=
OC
OM
=
3

∴∠OMC=60°.
∴二面角C-PB-A的度数为60°.(12分)
点评:本题考查平面与平面垂直的证明,考查二面角的度数的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分别是PB,CD的中点.
(Ⅰ)证明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1)求点A到平面PDE的距离;
(2)在PA上确定一点F,使BF∥平面PDE;
(3)求异面直线PC与DE所成的角(用反三角函数表示);
(4)求面PDE与面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k为常数).
(1)若f(x)的图象中相邻两对称轴之间的距离不小于
π
2
,求ω的取值范围;
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]时,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=9,求该圆中经过点A(1,2)的弦的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD.
(1)求证:BF∥平面ACE;
(2)求证:平面EAC⊥平面BDEF
(3)求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体A-BCD中,O为底面正三角形BCD的中心,E为AB中点,求异面直线OE与BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点P(1,1),倾斜角α=
π
6

(1)写出直线l的参数方程.
(2)设l与圆x2+y2=4相交于点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,Q为线段AP的中点,AB=3,BC=4,PA=2,则P到平面BQD的距离为
 

查看答案和解析>>

同步练习册答案