精英家教网 > 高中数学 > 题目详情
如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD.
(1)求证:BF∥平面ACE;
(2)求证:平面EAC⊥平面BDEF
(3)求几何体ABCDEF的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)记AC与BD的交点为O,则DO=BO=
1
2
BD,连接EO,则可证出四边形EFBO是平行四边形,从而BF∥EO,最后结合线面平行的判定定理,可得BF∥平面ACE;
(2)利用面面垂直的判定定理证明平面EAC⊥平面BDEF;
(3)利用条件公式求几何体的条件.
解答: (1)证明:记AC与BD的交点为O,则DO=BO=
1
2
BD,连接EO,
∵EF∥BD且EF=
1
2
BD,
∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,
∴BF∥EO,
又∵EO?面ACE,BF?面ACE,
∴BF∥平面ACE; 
(2)证明:∵ED⊥平面ABCD,AC?平面ABCD,∴ED⊥AC.
∵ABCD为正方形,∴BD⊥AC,
又ED∩BD=D,∴AC⊥平面BDEF,
又AC?平面EAC,∴平面EAC⊥平面BDEF;
(3)解:∵ED⊥平面ABCD,∴ED⊥BD,
又∵EF∥BD且EF=
1
2
BD,∴BDEF是直角梯形,
又∵ABCD是边长为2的正方形,BD=2
2
,EF=
2

梯形BDEF的面积为
(
2
+2
2
)×1
2
=
3
2
2

由(1)知AC⊥平面BDEF,
∴几何体的体积VABCDEF=2VA-BDEF=2×
1
3
SBDEF•AO=2×
1
3
×
3
2
2
×
2
=2
点评:本题以一个特殊多面体为例,考查了线面平行的判定定理、面面垂直的判定理、空间几何体的体积,要求熟练掌握相应的判定定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,直线l:y=-x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-3x的导函数为f′(x),且函数f′(x)的对称轴为x=-1.
(1)求a的值;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D四点不共面,M、N分别是△ABD和△BCD的重心.求证:MN∥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2
2
,AC=2,PA=2,求二面角C-PB-A的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中没有红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

二进制数110101转换成八进制数的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,4),B(4,2),直线l:ax-y+8-a=0,若直线l与直线AB平行,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于
 

查看答案和解析>>

同步练习册答案