精英家教网 > 高中数学 > 题目详情
已知函数y=x+5+
-x2-2x+4
,求其值域.
考点:函数的值域
专题:函数的性质及应用
分析:由y=x+5+
-x2-2x+4
得:y-x-5=
-x2-2x+4
,平方后整理得2x2+(12-2y)x+y2-10y+21=0,根据判别式法,可得△=(12-2y)2-8(y2-10y+21)≥0,解得y的范围即为函数的值域.
解答: 解:由y=x+5+
-x2-2x+4
得:y-x-5=
-x2-2x+4

故x2+y2+25-2xy+10x-10y=-x2-2x+4,
即2x2+(12-2y)x+y2-10y+21=0,
由△=(12-2y)2-8(y2-10y+21)≥0得:y2-8y+6≤0
解得:y∈[4-
10
,4+
10
],
故函数y=x+5+
-x2-2x+4
的值域为[4-
10
,4+
10
].
点评:本题考查的知识点是函数的值域,熟练掌握判断式法求函数值域的方法和步骤是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,BA、BC、BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(Ⅰ)若点G在线段AB上,且BG=3GA,求证:CG∥平面ADF;
(Ⅱ)求证:平面ABD⊥平面DEF.
(Ⅲ)求直线DF与平面ABEF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+2n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}中,b1=1,bn=2bn-1+1(n≥2),求{bn}的通项公式;
(Ⅲ)若cn=an(bn+1),求数列{cn}前几项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1离心率是
2
,过点(
3
,1),且右支上的弦AB过右焦点F.
(1)求双曲线C的方程;
(2)求弦AB的中点M的轨迹E的方程;
(3)是否存在以AB为直径的圆过原点O?,若存在,求出直线AB的斜率k的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:
品牌
首次出现故障时间
x年
0<x≤11<x≤22<x≤3x>30<x≤22<x≤3x>3
空调数量(台)124432345
每台利润(千元)122.52.71.52.62.8
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列;
(Ⅲ)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
x+1
x+2
≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),g(x)都定义在实数集R上,且满足f(x)为奇函数,g(x)为偶函数,f(x)+g(x)=x2+x-2,试求函数f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分别是PB,CD的中点.
(Ⅰ)证明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1)求点A到平面PDE的距离;
(2)在PA上确定一点F,使BF∥平面PDE;
(3)求异面直线PC与DE所成的角(用反三角函数表示);
(4)求面PDE与面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

同步练习册答案