精英家教网 > 高中数学 > 题目详情
14.如果cosθ<0,且tanθ<0,则θ是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

分析 根据cosθ<0,在二,三象限,且tanθ<0,在二,四象限,综合可得答案.

解答 解:∵cosθ<0,在二,三象限,且tanθ<0,在二,四象限,
综合可得:θ在第二象限的角.
故选:B.

点评 本题考查三角函数值的符号,牢记:一全正、二正弦、三正切、四余弦是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知不等式|2x-3|>x的解集与不等式x2+ax+b>0的解集相等,则实数a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某商场一周内被消费者投诉的次数用ξ表示.据统计,随机变量ξ的概率分布列如表,则x的值为(  )
ξ
 
0123
P0.10.32x
 
x
A.0.2B.0.4C.1.5D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2+x-6<0},B={y|y=2x-1,x≤2},则A∩B=(  )
A.(-3,3]B.(-1,3)C.(-3,2]D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
非体育迷体育迷合计
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函数f(x)的单调递减区间;
(2)若y=f(x+φ)关于直线x=$\frac{π}{3}$对称,求|φ|的最小值;
(3)当x∈[0,$\frac{π}{2}$]时,若方程|f(x)|-m=0有4个不同的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow m=({sinA,cosA}),\overrightarrow n=(\sqrt{3},1),\overrightarrow m•\overrightarrow n=\sqrt{3}$,且A是锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4sinAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线xcosα+ysinα-1=0与圆(x-1)2+(y-sinα)2=$\frac{1}{16}$相切,α为锐角,则斜率k=(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又有零点的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=tanxC.y=ex+e-xD.y=ln|x|

查看答案和解析>>

同步练习册答案