精英家教网 > 高中数学 > 题目详情
4.下列函数中,既是偶函数又有零点的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=tanxC.y=ex+e-xD.y=ln|x|

分析 根据函数奇偶性的性质和定义结合函数零点的性质分别进行判断即可.

解答 解:A.函数的定义域为[0,+∞),为非奇非偶函数,不满足条件.
B.函数y=tanx是奇函数,不满足条件.
C.y=ex+e-x≥2$\sqrt{{e}^{x}•{e}^{-x}}$=2,则函数没有零点,不满足条件.
D.函数的定义域为{x|x≠0},f(-x)=f(x),函数为偶函数,
由y=ln|x|=0得x=1,函数存在零点,满足条件.
故选:D

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性和定义和函数零点的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如果cosθ<0,且tanθ<0,则θ是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若${(1-2x)^{2013}}={a_0}+{a_1}x+{a_2}{x^2}+…{a_n}{x^n}$(x∈R),则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…\frac{{{a_{2013}}}}{{{2^{2014}}}}$值为(  )
A.1B.0C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=AB=2,EF=$\sqrt{2}$,则异面直线AB与PC所成的角为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.${cos^4}\frac{π}{8}-{sin^4}\frac{π}{8}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;\;(b>0)$的离心率为2,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,下列命题正确的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,B.若$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则|$\overrightarrow{a}$|+|$\overrightarrow{b}$|>|$\overrightarrow{c}$|
C.若($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥$\frac{{-{x^2}+mx-3}}{2}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成角的度数是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案