精英家教网 > 高中数学 > 题目详情
19.${cos^4}\frac{π}{8}-{sin^4}\frac{π}{8}$=$\frac{\sqrt{2}}{2}$.

分析 利用平方差公式化简,结合二倍角公式可得答案.

解答 解:由${cos^4}\frac{π}{8}-{sin^4}\frac{π}{8}$=(cos2$\frac{π}{8}$+sin2$\frac{π}{8}$)(cos2$\frac{π}{8}$-sin2$\frac{π}{8}$+)=cos(2×$\frac{π}{8}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查了平方差公式化简能力和二倍角公式的计算.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
非体育迷体育迷合计
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),对于任意x∈R满足f(-x)=f(x),且相邻两条对称轴间的距离为$\frac{π}{2}$.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求函数$y=f(x)+f({x+\frac{π}{4}})$的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=sin2x+sinx-2的值域为(  )
A.[-$\frac{9}{4}$,0]B.[-2,$\frac{1}{4}$]C.[-2,0]D.[-$\frac{9}{4}$,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)过点A(2,2)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又有零点的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=tanxC.y=ex+e-xD.y=ln|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,四边形BCC1B1为菱形,点M是棱AC上不同于A,C的点,平面B1BM与棱A1C1交于点N,AB=BC=2,∠ABC=90°,∠BB1C1=60°.
(Ⅰ)求证:B1N∥平面C1BM;
(Ⅱ)求证:B1C⊥平面ABC1
(Ⅲ)若二面角A-BC1-M为30°,求AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=1,AA1=BC=2,点D在侧棱AA1上.
(1)若D为AA1的中点,求证:C1D⊥平面BCD;
(2)若A1D=$\sqrt{2}$,求二面角B-C1D-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y2=2px的准线经过点(-2,2),则该抛物线的焦点坐标为(  )
A.(-2,0)B.(2,0)C.(0,-1)D.(0,1)

查看答案和解析>>

同步练习册答案