精英家教网 > 高中数学 > 题目详情
9.抛物线y2=2px的准线经过点(-2,2),则该抛物线的焦点坐标为(  )
A.(-2,0)B.(2,0)C.(0,-1)D.(0,1)

分析 由已知可得p>0,且求得p值,则抛物线焦点坐标可求.

解答 解:∵抛物线y2=2px的准线经过(-2,2),
∴p>0,且准线方程为x=-2,即-$\frac{p}{2}$=-2,得p=4.
∴抛物线的焦点坐标为($\frac{p}{2},0$)=(2,0).
故选:B.

点评 本题考查抛物线的标准方程,考查抛物线的简单性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.${cos^4}\frac{π}{8}-{sin^4}\frac{π}{8}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A${\;}_{10}^{m}$=10×9×8,那么m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=xlnx-1的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2ax+1(a∈R).
(1)当a=2时,求f(x)在x∈[1,4]上的最值;
(2)当x∈[1,4]时,不等式f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成角的度数是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和抛物线y2=4$\sqrt{3}$x的焦点相同,且椭圆过点(-$\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆方程;
(2)过点(3,0)的直线交椭圆于A、B两点,P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OP}$(λ≠0,O为原点),当|AB|<$\sqrt{3}$时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,AB=AC,点M在BC上,$4\overrightarrow{BM}=\overrightarrow{BC}$,N是AM的中点,sin∠BAM=$\frac{1}{3}$,AC=2,则$\overrightarrow{AM}•\overrightarrow{CN}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设U={x|x是不大于8的正整数},A={2,4,5,8},B={1,3,5,7},求A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

同步练习册答案