精英家教网 > 高中数学 > 题目详情
已知不是常数函数,对于的周期是     .
8
要得到函数的周期,需要凑出.
因为,所以,即,所以,故函数的周期为8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图象与直线最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

造船厂年造船量20艘,造船艘产值函数为(单位:万元),成本函数(单位:万元),又在经济学中,函数的边际函数定义为
(1)求利润函数及边际利润函数(利润=产值—成本)
(2)问年造船量安排多少艘时,公司造船利润最大
(3)边际利润函数的单调递减区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知,(其中为自然对数的底数),根据你的数学知识,推断间的隔离直线方程为                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)判断函数的奇偶性;
(2)判断函数在定义域内是增函数还是减函数?请说明理由;
(3)已知,解关于不等式: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为R,对任意的都满足,当时,.  
(1)判断并证明的单调性和奇偶性;  
(2)是否存在这样的实数m,当时,使不等式

对所有恒成立,如存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题




查看答案和解析>>

同步练习册答案