如图所示,已知椭圆的两个焦点分别为、,且到直线的距离等于椭圆的短轴长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过、,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.
科目:高中数学 来源: 题型:解答题
已知抛物线,点,过的直线交抛物线于两点.
(1)若,抛物线的焦点与中点的连线垂直于轴,求直线的方程;
(2)设为小于零的常数,点关于轴的对称点为,求证:直线过定点
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知抛物线,设点,,为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结、并分别延长交抛物线于点、,连结,设、的斜率存在且分别为、.
(1)若,,,求;
(2)是否存在与无关的常数,是的恒成立,若存在,请将用、表示出来;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点,,动点满足.
(1)求动点的轨迹的方程;
(2)在直线:上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知坐标平面内:,:.动点P与外切与内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com