精英家教网 > 高中数学 > 题目详情

求以椭圆的焦点为焦点,且过点的双曲线的标准方程.

解析试题分析:首先设出双曲线的标准方程,然后利用与椭圆的关系、双曲线过点建立组可求得a,b的值.
试题解析:由椭圆的标准方程可知,椭圆的焦点在轴上.
设双曲线的标准方程为
根据题意, 解得(不合题意舍去),
∴双曲线的标准方程为
考点:1、椭圆的几何性质;2、双曲线的方程求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点. 过它的两个焦点分别作直线交椭圆于A、B两点,交椭圆于C、D两点,且

(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知点,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和线段的垂直平分线相交于点
(1)求动点的轨迹的方程;
(2)过(1)中的轨迹上的定点作两条直线分别与轨迹相交于两点.试探究:当直线的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线交椭圆两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线AG,BG相交于点G,且它们的斜率之积是
(Ⅰ)求点G的轨迹的方程;
(Ⅱ)圆上有一个动点P,且P在x轴的上方,点,直线PA交(Ⅰ)中的轨迹于D,连接PB,CD.设直线PB,CD的斜率存在且分别为,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率的椭圆一个焦点为.
(1)求椭圆的方程;
(2) 若斜率为1的直线交椭圆两点,且,求直线方程.

查看答案和解析>>

同步练习册答案