求以椭圆
的焦点为焦点,且过
点的双曲线的标准方程.
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,且经过点
. 过它的两个焦点
,
分别作直线
与
,
交椭圆于A、B两点,
交椭圆于C、D两点,且
.![]()
(1)求椭圆的标准方程;
(2)求四边形
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知点
和
,过点
的直线
与过点
的直线
相交于点
,设直线
的斜率为
,直线
的斜率为
,如果
,求点
的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在
中,
的外角平分线
与边
的延长线相交于点
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点
,点
在直线
:
上运动,过点
与
垂直的直线和线段
的垂直平分线相交于点
.
(1)求动点
的轨迹
的方程;
(2)过(1)中的轨迹
上的定点![]()
作两条直线分别与轨迹
相交于
,
两点.试探究:当直线
,
的斜率存在且倾斜角互补时,直线
的斜率是否为定值?若是,求出这个定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的左、右焦点分别为
、
,椭圆上的点
满足
,且
的面积
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使
与椭圆
交于不同的两点
、
,且线段
恰被直线
平分?若存在,求出
的斜率取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知椭圆
的两个焦点分别为
、
,且
到直线
的距离等于椭圆的短轴长.![]()
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 若圆
的圆心为
(
),且经过
、
,
是椭圆
上的动点且在圆
外,过
作圆
的切线,切点为
,当
的最大值为
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,
,直线AG,BG相交于点G,且它们的斜率之积是
.
(Ⅰ)求点G的轨迹
的方程;
(Ⅱ)圆
上有一个动点P,且P在x轴的上方,点
,直线PA交(Ⅰ)中的轨迹
于D,连接PB,CD.设直线PB,CD的斜率存在且分别为
,
,若
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com