精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
(1)证明详见解析;(2).

试题分析:(1) 由PD⊥平面ABCD,得PD⊥BC,由∠BCD=90°,得CD⊥BC,所以BC⊥平面PCD,那么PC⊥BC;(2)利用等积法,先求出棱锥的体积V=SABC·PD=,再求出S△PBC,由S△PBC·h=V=,得h=
解:(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC.      1分
由∠BCD=90°,得CD⊥BC.         3分
又PD∩DC=D, PD,DC 平面PCD,
∴ BC⊥平面PCD.         5分
∵ PC 平面PCD,故PC⊥BC.           7分
 
(2)连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴∠ABC=90°.   8分
由AB=2,BC=1,得△ABC的面积S△ABC=1.  9分
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V=SABC·PD=.                        10分
∵ PD⊥平面ABCD,DC平面ABCD,∴ PD⊥DC.         ....11分
∴PD=DC=1,∴PC=.由PC⊥BC,BC=1,
得△PBC的面积S△PBC.                 .. ..12分
∵VA - PBC=VP - ABC
S△PBC·h=V=,得h=.             .13分
故点A到平面PBC的距离等于.              14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的侧棱平面为等边三角形,侧面是正方形,的中点,是棱上的点.

(1)若是棱中点时,求证:平面;
(2)当时,求正方形的边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥S-ABC中,AB⊥BC,AB=BC=
2
,SA=SC=2,二面角S-AC-B的余弦值是
3
3
,若S、A、B、C都在同一球面上,则该球的表面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体ABCDE中,AB=AD=BC=DC=2,AE=2
2
,AB⊥AD,且AE⊥平面ABD,平面CBD⊥平面ABD.
(Ⅰ)求证:AB平面CDE;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是______°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

所在平面外一点,若,则在平面内的射影是的(   )
A.内心B.外心 C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4.

其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,α、β表示不同平面,则下列结论中正确的是(  )
A.若m∥α,m∥n,则n∥α
B.若m?α,n?β,m∥β,n∥α,则α∥β
C.若α∥β,m∥α,m∥n,则n∥β
D.若α∥β,m∥α,n∥m,n?β,则n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面

查看答案和解析>>

同步练习册答案