精英家教网 > 高中数学 > 题目详情
如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4.

其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③
A
∵AM⊥BC,DM⊥BC,∴BC⊥面AMD,故①正确,②也正确;③中,VC-AMDVA-BCD,A到底面BCD的距离AO=
VA-BCD××4××4×,∴VC-AMD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.
(1)证明:平面BGM⊥平面BFC;
(2)求三棱锥F-BMC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,平面依次是的中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱ABC-A1B1C1的底面为直角三角形,则棱与底面垂直,如图所示,D是棱CC1的中点,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α,β和直线m,给出下列条件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)当满足条件________时,有m∥β;
(2)当满足条件________时,有m⊥β(填所选条件的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的个数为(  )
A.4 B.3C.2 D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在底面边长为的正方形的四棱锥中,已知,且,则直线与平面所成的角大小为                

查看答案和解析>>

同步练习册答案