精英家教网 > 高中数学 > 题目详情
12.已知集合A={a,b},B={0,1},则下列对应不是从A到B的映射的是(  )
A.B.C.D.

分析 由映射的定义可得,在集合A中的每一个元素在集合B中都有唯一确定的元素与之对应.

解答 解:由映射的定义可得,在集合A中的每一个元素在集合B中都有唯一确定的元素与之对应,选项A、B、D可以,选项C不可以.
故选C.

点评 本题考查了映射的定义,正确理解定义是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图:
(Ⅰ)写出a的值;
(Ⅱ)求在抽取的40名学生中月上网次数不少于15次的学生人数;
(Ⅲ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,a2=0,S5=2a4-1.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点 A(1,3),B(3,1),C(-1,0),则△ABC的面积为(  )
A.5B.$5\sqrt{2}$C.10D.$10\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求适合下列条件的双曲线的标准方程:
(1)两焦点坐标为(0,-5),(0,5),且a=4;
(2)两焦点坐标为(0,-6),(0,6),且经过点(2,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a,b,c,且满足a2-b2-c2+$\sqrt{3}$bc=0,2bsinA=a,BC边上中线AM的长为$\sqrt{14}$
( I)求角A和角B的大小;
( II)求△ABC的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=tanωx在区间(0,$\frac{π}{4}$),($\frac{π}{4},\frac{π}{2}$)上单调递增,但在区间(0,$\frac{π}{2}$)上没有单调性,则ω可以是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆O:x2+y2=4和圆C:x2+(y-4)2=1.
(1)判断圆O和圆C的位置关系;
(2)过圆C的圆心C作圆O的切线l,求切线l的方程;(结果必须写成一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知公比小于1的等比数列{an}的前n项和为Sn,a1=$\frac{1}{2},7{a_2}=2{S_3}$.
(1)求数列{an}的通项公式;
(2)设bn=log2(1-Sn+1),若$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+…+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$,求n.

查看答案和解析>>

同步练习册答案