精英家教网 > 高中数学 > 题目详情

已知实数x,y满足x2+y2-4x+1=0,则数学公式的最大值为________.


分析:可看作点(x,y)与原点连线的斜率,所以问题转化为求圆上一点与原点连线中斜率最大值的问题.
解答:解:圆的圆心坐标(2,0)半径为,如图:
=k,则y=kx,
所以k为过原点与圆x2+y2-4x+1=0上的点连线的斜率.
由几何意义知,直线与圆相切时,直线的斜率取得最大值或最小值,
圆的半径为,圆心到原点的距离为2,
所以k=tan60°=
所以的最大值是
故答案为:
点评:考查的几何意义,类似于本题中这样的分式形式求最值时一般都转化为求直线的斜率来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x2
a2
-
y2
b2
=1(a>0,b>0)
,则下列不等式中恒成立的是(  )
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y≥0
x≤1.
则z=2x+4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥0
y≥0
x+y≤s
y+2x≤4
,当2≤s≤3时,目标函数z=3x+2y的最大值函数f(s)的最小值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江一模)已知实数x,y满足
x≥1
y≤2
x-y≤0
,则x2+y2的最小值是(  )

查看答案和解析>>

同步练习册答案