分析 根据等差数列的性质化简S17=S9,再利用等差数列的通项公式化简,用含a1的式子表示出d,把a1的值代入即可求出d的值,然后由a1和d的值写出等差数列的通项公式,进而表示出等差数列的前n项和为关于n的二次函数,配方后即可求出Sn的最大值.
解答 解:由S17=S9,
得到$\frac{17({a}_{1}+{a}_{17})}{2}$=$\frac{9({a}_{1}+{a}_{9})}{2}$,
即17(2a1+16d)=9(2a1+8d),又a1=50,
解得:d=-$\frac{2{a}_{1}}{25}$=-4,
所以an=a1+(n-1)d=-4n+54,
则Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(-4n+54)}{2}$=-2n2+27n=-2(n-$\frac{27}{4}$)2+$\frac{729}{8}$,
因为n是正整数,
所以当n=7时,Snmax=91.
点评 此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,掌握等差数列的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{5}{2}$ | C. | $\frac{7}{4}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com