分析 (1)由$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$得$\left\{\begin{array}{l}{cosα=\frac{x}{3}}\\{sinα=\frac{y}{2}}\end{array}\right.$,代入cos2α+sin2α=1可得曲线C1的普通方程;
(2)曲线C的普通方程是:x+2y-10=0,设点M(3coxα,2sinα),由点到直线的距离公式得:$d=\frac{|3cosα+4sinα-10|}{\sqrt{5}}$,进而可得答案.
解答 解:(1)由$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$得$\left\{\begin{array}{l}{cosα=\frac{x}{3}}\\{sinα=\frac{y}{2}}\end{array}\right.$,
代入cos2α+sin2α=1得:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$;
(2)曲线C的普通方程是:x+2y-10=0,
设点M(3coxα,2sinα),由点到直线的距离公式得:
$d=\frac{|3cosα+4sinα-10|}{\sqrt{5}}$=$\frac{1}{\sqrt{5}}$|5cos(α-φ)-10|$;\\;\\;\\;cosφ=\frac{3}{5},sinφ=\frac{4}{5}$ 其中sinφ=$\frac{4}{5}$,cosφ=$\frac{3}{5}$,
当α-φ=0时,dmin=$\sqrt{5}$,此时M点的坐标($\frac{9}{5},\frac{8}{5}$).
点评 本题考查的知识点是椭圆的参数方程,直线的极坐标方程,直线与椭圆的位置关系,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最大值是1 | B. | f(x)是奇函数 | ||
| C. | f(x)在[0,1]上是增函数 | D. | f(x)是以π为最小正周期的函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com